跳到主要内容

计算机网络

一、计算机网络基础

1. 网络分层模型

OSI 七层模型 是国际标准化组织提出的一个网络分层模型,其大体结构以及每一层提供的功能如下图所示:

image-20250313160032747

  1. 物理层(Physical Layer)
    • 负责传输原始比特流。
    • 定义物理介质(如电缆、光纤)、信号的电气特性、传输速率等。
    • 处理信号的调制、编码和传输。
  2. 数据链路层(Data Link Layer)
    • 提供节点间的可靠数据传输。
    • 负责帧的封装、错误检测和纠正。
    • 管理物理地址(如MAC地址)和流量控制。
  3. 网络层(Network Layer)
    • 负责数据包的路由选择和转发。
    • 提供逻辑地址(如IP地址)以在不同网络之间进行通信。
    • 处理拥塞控制和分段。
  4. 传输层(Transport Layer)
    • 确保数据的可靠传输。
    • 负责数据分段、重组和流量控制。
    • 提供端到端的通信服务,如TCP(传输控制协议)和UDP(用户数据报协议)。
  5. 会话层(Session Layer)
    • 负责建立、管理和终止会话。
    • 提供会话恢复和同步功能。
    • 处理数据交换的控制和管理。
  6. 表示层(Presentation Layer)
    • 负责数据格式的转换和翻译。
    • 处理数据的加密、解密和压缩。
    • 确保不同系统之间的数据能够被理解。
  7. 应用层(Application Layer)
    • 提供用户与网络的接口。
    • 包括各种网络应用和服务,如HTTP、FTP、SMTP等。
    • 处理用户数据和应用程序之间的交互。

TCP/IP 四层模型是什么?每一层的作用是什么?

TCP/IP 四层模型 是目前被广泛采用的一种模型,我们可以将 TCP / IP 模型看作是 OSI 七层模型的精简版本,由以下 4 层组成:

  1. 应用层
  2. 传输层
  3. 网络层
  4. 网络接口层

为什么要分层?

  1. 各层之间相互独立:各层之间相互独立,各层之间不需要关心其他层是如何实现的,只需要知道自己如何调用下层提供好的功能就可以了(可以简单理解为接口调用)。
  2. 提高了灵活性和可替换性:每一层都可以使用最适合的技术来实现,你只需要保证你提供的功能以及暴露的接口的规则没有改变就行了。并且,每一层都可以根据需要进行修改或替换,而不会影响到整个网络的结构。
  3. 大问题化小:分层可以将复杂的网络问题分解为许多比较小的、界线比较清晰简单的小问题来处理和解决。这样使得复杂的计算机网络系统变得易于设计,实现和标准化。

2. 常见网络协议

应用层协议

  • HTTP(Hypertext Transfer Protocol,超文本传输协议):基于 TCP 协议,是一种用于传输超文本和多媒体内容的协议,主要是为 Web 浏览器与 Web 服务器之间的通信而设计的。当我们使用浏览器浏览网页的时候,我们网页就是通过 HTTP 请求进行加载的。
  • SMTP(Simple Mail Transfer Protocol,简单邮件发送协议):基于 TCP 协议,是一种用于发送电子邮件的协议。注意 ⚠️:SMTP 协议只负责邮件的发送,而不是接收。要从邮件服务器接收邮件,需要使用 POP3 或 IMAP 协议。
  • POP3/IMAP(邮件接收协议):基于 TCP 协议,两者都是负责邮件接收的协议。IMAP 协议是比 POP3 更新的协议,它在功能和性能上都更加强大。IMAP 支持邮件搜索、标记、分类、归档等高级功能,而且可以在多个设备之间同步邮件状态。几乎所有现代电子邮件客户端和服务器都支持 IMAP。
  • FTP(File Transfer Protocol,文件传输协议) : 基于 TCP 协议,是一种用于在计算机之间传输文件的协议,可以屏蔽操作系统和文件存储方式。注意 ⚠️:FTP 是一种不安全的协议,因为它在传输过程中不会对数据进行加密。建议在传输敏感数据时使用更安全的协议,如 SFTP。
  • Telnet(远程登陆协议):基于 TCP 协议,用于通过一个终端登陆到其他服务器。Telnet 协议的最大缺点之一是所有数据(包括用户名和密码)均以明文形式发送,这有潜在的安全风险。这就是为什么如今很少使用 Telnet,而是使用一种称为 SSH 的非常安全的网络传输协议的主要原因。
  • SSH(Secure Shell Protocol,安全的网络传输协议):基于 TCP 协议,通过加密和认证机制实现安全的访问和文件传输等业务
  • RTP(Real-time Transport Protocol,实时传输协议):通常基于 UDP 协议,但也支持 TCP 协议。它提供了端到端的实时传输数据的功能,但不包含资源预留存、不保证实时传输质量,这些功能由 WebRTC 实现。
  • DNS(Domain Name System,域名管理系统): 基于 UDP 协议,用于解决域名和 IP 地址的映射问题。

传输层协议

  • TCP(Transmission Control Protocol,传输控制协议 ):提供 面向连接 的,可靠 的数据传输服务。
  • UDP(User Datagram Protocol,用户数据协议):提供 无连接 的,尽最大努力 的数据传输服务(不保证数据传输的可靠性),简单高效。

网络层协议

  • IP(Internet Protocol,网际协议):TCP/IP 协议中最重要的协议之一,属于网络层的协议,主要作用是定义数据包的格式、对数据包进行路由和寻址,以便它们可以跨网络传播并到达正确的目的地。目前 IP 协议主要分为两种,一种是过去的 IPv4,另一种是较新的 IPv6,目前这两种协议都在使用,但后者已经被提议来取代前者。
  • ARP(Address Resolution Protocol,地址解析协议):ARP 协议解决的是网络层地址和链路层地址之间的转换问题。因为一个 IP 数据报在物理上传输的过程中,总是需要知道下一跳(物理上的下一个目的地)该去往何处,但 IP 地址属于逻辑地址,而 MAC 地址才是物理地址,ARP 协议解决了 IP 地址转 MAC 地址的一些问题。
  • ICMP(Internet Control Message Protocol,互联网控制报文协议):一种用于传输网络状态和错误消息的协议,常用于网络诊断和故障排除。例如,Ping 工具就使用了 ICMP 协议来测试网络连通性。
  • NAT(Network Address Translation,网络地址转换协议):NAT 协议的应用场景如同它的名称——网络地址转换,应用于内部网到外部网的地址转换过程中。具体地说,在一个小的子网(局域网,LAN)内,各主机使用的是同一个 LAN 下的 IP 地址,但在该 LAN 以外,在广域网(WAN)中,需要一个统一的 IP 地址来标识该 LAN 在整个 Internet 上的位置。
  • OSPF(Open Shortest Path First,开放式最短路径优先):一种内部网关协议(Interior Gateway Protocol,IGP),也是广泛使用的一种动态路由协议,基于链路状态算法,考虑了链路的带宽、延迟等因素来选择最佳路径。
  • RIP(Routing Information Protocol,路由信息协议):一种内部网关协议(Interior Gateway Protocol,IGP),也是一种动态路由协议,基于距离向量算法,使用固定的跳数作为度量标准,选择跳数最少的路径作为最佳路径。
  • BGP(Border Gateway Protocol,边界网关协议):一种用来在路由选择域之间交换网络层可达性信息(Network Layer Reachability Information,NLRI)的路由选择协议,具有高度的灵活性和可扩展性。

二、HTTP

1. 从输入 URL 到页面展示到底发生了什么?

类似的问题:打开一个网页,整个过程会使用哪些协议?

先来看一张图(来源于《图解 HTTP》):

image-20250313162223173

上图有一个错误需要注意:是 OSPF 不是 OPSF。 OSPF(Open Shortest Path First,ospf)开放最短路径优先协议, 是由 Internet 工程任务组开发的路由选择协议

总体来说分为以下几个步骤:

  1. 在浏览器中输入指定网页的 URL。
  2. 浏览器通过 DNS 协议,获取域名对应的 IP 地址。
  3. 浏览器根据 IP 地址和端口号,向目标服务器发起一个 TCP 连接请求。
  4. 浏览器在 TCP 连接后,向服务器发送一个 HTTP 请求报文,请求获取网页的内容。
  5. 服务器收到 HTTP 请求报文后,处理请求,并返回 HTTP 响应报文给浏览器。
  6. 浏览器收到 HTTP 响应报文后,解析响应体中的 HTML 代码,渲染网页的结构和样式,同时根据 HTML 中的其他资源的 URL(如图片、CSS、JS 等),再次发起 HTTP 请求,获取这些资源的内容,直到网页完全加载显示。
  7. 浏览器在不需要和服务器通信时,可以主动关闭 TCP 连接,或者等待服务器的关闭请求。

2. HTTP状态码有哪些?

image-20250313163005834

3. HTTP和HTTPS有什么区别?

  • 端口号:HTTP 默认是 80,HTTPS 默认是 443。
  • URL 前缀:HTTP 的 URL 前缀是 http://,HTTPS 的 URL 前缀是 https://
  • 安全性和资源消耗:HTTP 协议运行在 TCP 之上,所有传输的内容都是明文,客户端和服务器端都无法验证对方的身份。HTTPS 是运行在 SSL/TLS 之上的 HTTP 协议,SSL/TLS 运行在 TCP 之上。所有传输的内容都经过加密,加密采用对称加密,但对称加密的密钥用服务器方的证书进行了非对称加密。所以说,HTTP 安全性没有 HTTPS 高,但是 HTTPS 比 HTTP 耗费更多服务器资源。
  • SEO(搜索引擎优化):搜索引擎通常会更青睐使用 HTTPS 协议的网站,因为 HTTPS 能够提供更高的安全性和用户隐私保护。使用 HTTPS 协议的网站在搜索结果中可能会被优先显示,从而对 SEO 产生影响。

4. GET和POST的区别?

GET 和 POST 是 HTTP 协议中两种常用的请求方法,它们在不同的场景和目的下有不同的特点和用法。一般来说,可以从以下几个方面来区分二者(重点搞清两者在语义上的区别即可):

  • 语义(主要区别):GET 通常用于获取或查询资源,而 POST 通常用于创建或修改资源。
  • 幂等:GET 请求是幂等的,即多次重复执行不会改变资源的状态,而 POST 请求是不幂等的,即每次执行可能会产生不同的结果或影响资源的状态。
  • 格式:GET 请求的参数通常放在 URL 中,形成查询字符串(querystring),而 POST 请求的参数通常放在请求体(body)中,可以有多种编码格式,如 application/x-www-form-urlencoded、multipart/form-data、application/json 等。GET 请求的 URL 长度受到浏览器和服务器的限制,而 POST 请求的 body 大小则没有明确的限制。不过,实际上 GET 请求也可以用 body 传输数据,只是并不推荐这样做,因为这样可能会导致一些兼容性或者语义上的问题。
  • 缓存:由于 GET 请求是幂等的,它可以被浏览器或其他中间节点(如代理、网关)缓存起来,以提高性能和效率。而 POST 请求则不适合被缓存,因为它可能有副作用,每次执行可能需要实时的响应。
  • 安全性:GET 请求和 POST 请求如果使用 HTTP 协议的话,那都不安全,因为 HTTP 协议本身是明文传输的,必须使用 HTTPS 协议来加密传输数据。另外,GET 请求相比 POST 请求更容易泄露敏感数据,因为 GET 请求的参数通常放在 URL 中。

三、WebSocket

1. 什么是WebSocket?

WebSocket 是一种基于 TCP 连接的全双工通信协议,即客户端和服务器可以同时发送和接收数据。

WebSocket 协议在 2008 年诞生,2011 年成为国际标准,几乎所有主流较新版本的浏览器都支持该协议。不过,WebSocket 不只能在基于浏览器的应用程序中使用,很多编程语言、框架和服务器都提供了 WebSocket 支持。

WebSocket 协议本质上是应用层的协议,用于弥补 HTTP 协议在持久通信能力上的不足。客户端和服务器仅需一次握手,两者之间就直接可以创建持久性的连接,并进行双向数据传输。

下面是 WebSocket 的常见应用场景:

  • 视频弹幕
  • 实时消息推送,详见Web 实时消息推送详解这篇文章
  • 实时游戏对战
  • 多用户协同编辑
  • 社交聊天
  • ……

四、Ping

1. Ping命令的作用是什么?

PING 命令是一种常用的网络诊断工具,经常用来测试网络中主机之间的连通性和网络延迟。

PING 命令的输出结果通常包括以下几部分信息:

  1. ICMP Echo Request(请求报文)信息:序列号、TTL(Time to Live)值。
  2. 目标主机的域名或 IP 地址:输出结果的第一行。
  3. 往返时间(RTT,Round-Trip Time):从发送 ICMP Echo Request(请求报文)到接收到 ICMP Echo Reply(响应报文)的总时间,用来衡量网络连接的延迟。
  4. 统计结果(Statistics):包括发送的 ICMP 请求数据包数量、接收到的 ICMP 响应数据包数量、丢包率、往返时间(RTT)的最小、平均、最大和标准偏差值。

如果 PING 对应的目标主机无法得到正确的响应,则表明这两个主机之间的连通性存在问题(有些主机或网络管理员可能禁用了对 ICMP 请求的回复,这样也会导致无法得到正确的响应)。如果往返时间(RTT)过高,则表明网络延迟过高。

2. Ping命令的工作原理是什么?

PING 基于网络层的 ICMP(Internet Control Message Protocol,互联网控制报文协议),其主要原理就是通过在网络上发送和接收 ICMP 报文实现的。

ICMP 报文中包含了类型字段,用于标识 ICMP 报文类型。ICMP 报文的类型有很多种,但大致可以分为两类:

  • 查询报文类型:向目标主机发送请求并期望得到响应。
  • 差错报文类型:向源主机发送错误信息,用于报告网络中的错误情况。

PING 用到的 ICMP Echo Request(类型为 8 ) 和 ICMP Echo Reply(类型为 0) 属于查询报文类型 。

  • PING 命令会向目标主机发送 ICMP Echo Request。
  • 如果两个主机的连通性正常,目标主机会返回一个对应的 ICMP Echo Reply。

五、DNS

1. DNS的作用是什么?

DNS(Domain Name System)域名管理系统,是当用户使用浏览器访问网址之后,使用的第一个重要协议。DNS 要解决的是域名和 IP 地址的映射问题

image-20250314084825412

在一台电脑上,可能存在浏览器 DNS 缓存,操作系统 DNS 缓存,路由器 DNS 缓存。如果以上缓存都查询不到,那么 DNS 就闪亮登场了。

目前 DNS 的设计采用的是分布式、层次数据库结构,DNS 是应用层协议,它可以在 UDP 或 TCP 协议之上运行,端口为 53

2. DNS服务器有哪些?根服务器有多少个?

DNS 服务器自底向上可以依次分为以下几个层级(所有 DNS 服务器都属于以下四个类别之一):

  • 根 DNS 服务器。根 DNS 服务器提供 TLD 服务器的 IP 地址。目前世界上只有 13 组根服务器,我国境内目前仍没有根服务器。
  • 顶级域 DNS 服务器(TLD 服务器)。顶级域是指域名的后缀,如comorgnetedu等。国家也有自己的顶级域,如ukfrca。TLD 服务器提供了权威 DNS 服务器的 IP 地址。
  • 权威 DNS 服务器。在因特网上具有公共可访问主机的每个组织机构必须提供公共可访问的 DNS 记录,这些记录将这些主机的名字映射为 IP 地址。
  • 本地 DNS 服务器。每个 ISP(互联网服务提供商)都有一个自己的本地 DNS 服务器。当主机发出 DNS 请求时,该请求被发往本地 DNS 服务器,它起着代理的作用,并将该请求转发到 DNS 层次结构中。严格说来,不属于 DNS 层级结构。

世界上并不是只有 13 台根服务器,这是很多人普遍的误解,网上很多文章也是这么写的。实际上,现在根服务器数量远远超过这个数量。最初确实是为 DNS 根服务器分配了 13 个 IP 地址,每个 IP 地址对应一个不同的根 DNS 服务器。然而,由于互联网的快速发展和增长,这个原始的架构变得不太适应当前的需求。为了提高 DNS 的可靠性、安全性和性能,目前这 13 个 IP 地址中的每一个都有多个服务器,截止到 2023 年底,所有根服务器之和达到了 1700 多台,未来还会继续增加。

3. DNS解析的过程是什么样的?

常采用:从请求主机到本地 DNS 服务器的查询是递归的,其余的查询时迭代的。

image-20250314085036961

现在,主机cis.poly.edu想知道gaia.cs.umass.edu的 IP 地址。假设主机cis.poly.edu的本地 DNS 服务器为dns.poly.edu,并且gaia.cs.umass.edu的权威 DNS 服务器为dns.cs.umass.edu

  1. 首先,主机cis.poly.edu向本地 DNS 服务器dns.poly.edu发送一个 DNS 请求,该查询报文包含被转换的域名gaia.cs.umass.edu
  2. 本地 DNS 服务器dns.poly.edu检查本机缓存,发现并无记录,也不知道gaia.cs.umass.edu的 IP 地址该在何处,不得不向根服务器发送请求。
  3. 根服务器注意到请求报文中含有edu顶级域,因此告诉本地 DNS,你可以向edu的 TLD DNS 发送请求,因为目标域名的 IP 地址很可能在那里。
  4. 本地 DNS 获取到了edu的 TLD DNS 服务器地址,向其发送请求,询问gaia.cs.umass.edu的 IP 地址。
  5. edu的 TLD DNS 服务器仍不清楚请求域名的 IP 地址,但是它注意到该域名有umass.edu前缀,因此返回告知本地 DNS,umass.edu的权威服务器可能记录了目标域名的 IP 地址。
  6. 这一次,本地 DNS 将请求发送给权威 DNS 服务器dns.cs.umass.edu
  7. 终于,由于gaia.cs.umass.edu向权威 DNS 服务器备案过,在这里有它的 IP 地址记录,权威 DNS 成功地将 IP 地址返回给本地 DNS。
  8. 最后,本地 DNS 获取到了目标域名的 IP 地址,将其返回给请求主机。

4. DNS劫持了解吗?如何应对?

DNS 劫持是一种网络攻击,它通过修改 DNS 服务器的解析结果,使用户访问的域名指向错误的 IP 地址,从而导致用户无法访问正常的网站,或者被引导到恶意的网站。DNS 劫持有时也被称为 DNS 重定向、DNS 欺骗或 DNS 污染。

六、TCP与UDP

1. TCP与UDP的区别

  • 是否面向连接:UDP 在传送数据之前不需要先建立连接。而 TCP 提供面向连接的服务,在传送数据之前必须先建立连接,数据传送结束后要释放连接。
  • 是否是可靠传输:远地主机在收到 UDP 报文后,不需要给出任何确认,并且不保证数据不丢失,不保证是否顺序到达。TCP 提供可靠的传输服务,TCP 在传递数据之前,会有三次握手来建立连接,而且在数据传递时,有确认、窗口、重传、拥塞控制机制。通过 TCP 连接传输的数据,无差错、不丢失、不重复、并且按序到达。
  • 是否有状态:这个和上面的“是否可靠传输”相对应。TCP 传输是有状态的,这个有状态说的是 TCP 会去记录自己发送消息的状态比如消息是否发送了、是否被接收了等等。为此 ,TCP 需要维持复杂的连接状态表。而 UDP 是无状态服务,简单来说就是不管发出去之后的事情了。
  • 传输效率:由于使用 TCP 进行传输的时候多了连接、确认、重传等机制,所以 TCP 的传输效率要比 UDP 低很多。
  • 传输形式:TCP 是面向字节流的,UDP 是面向报文的。
  • 首部开销:TCP 首部开销(20 ~ 60 字节)比 UDP 首部开销(8 字节)要大。
  • 是否提供广播或多播服务:TCP 只支持点对点通信,UDP 支持一对一、一对多、多对一、多对多;
TCPUDP
是否面向连接
是否可靠
是否有状态
传输效率较慢较快
传输形式字节流数据报文段
首部开销20 ~ 60 bytes8 bytes
是否提供广播或多播服务

2. 什么时候选择 TCP,什么时候选 UDP?

UDP 一般用于即时通信,比如:语音、 视频、直播等等。这些场景对传输数据的准确性要求不是特别高,比如你看视频即使少个一两帧,实际给人的感觉区别也不大。

TCP 用于对传输准确性要求特别高的场景,比如文件传输、发送和接收邮件、远程登录等等。

3. HTTP基于TCP还是UDP?

HTTP/3.0 之前是基于 TCP 协议的,而 HTTP/3.0 将弃用 TCP,改用 基于 UDP 的 QUIC 协议

4. 使用TCP的协议有哪些?使用UDP的协议有哪些?

运行于 TCP 协议之上的协议

  1. HTTP 协议(HTTP/3.0 之前):超文本传输协议(HTTP,HyperText Transfer Protocol)是一种用于传输超文本和多媒体内容的协议,主要是为 Web 浏览器与 Web 服务器之间的通信而设计的。当我们使用浏览器浏览网页的时候,我们网页就是通过 HTTP 请求进行加载的。

  2. HTTPS 协议:更安全的超文本传输协议(HTTPS,Hypertext Transfer Protocol Secure),身披 SSL 外衣的 HTTP 协议

  3. FTP 协议:文件传输协议 FTP(File Transfer Protocol)是一种用于在计算机之间传输文件的协议,可以屏蔽操作系统和文件存储方式。注意 ⚠️:FTP 是一种不安全的协议,因为它在传输过程中不会对数据进行加密。建议在传输敏感数据时使用更安全的协议,如 SFTP。

  4. SMTP 协议:简单邮件传输协议(SMTP,Simple Mail Transfer Protocol)的缩写,是一种用于发送电子邮件的协议。注意 ⚠️:SMTP 协议只负责邮件的发送,而不是接收。要从邮件服务器接收邮件,需要使用 POP3 或 IMAP 协议。

  5. POP3/IMAP 协议:两者都是负责邮件接收的协议。IMAP 协议是比 POP3 更新的协议,它在功能和性能上都更加强大。IMAP 支持邮件搜索、标记、分类、归档等高级功能,而且可以在多个设备之间同步邮件状态。几乎所有现代电子邮件客户端和服务器都支持 IMAP。

  6. Telnet 协议:用于通过一个终端登陆到其他服务器。Telnet 协议的最大缺点之一是所有数据(包括用户名和密码)均以明文形式发送,这有潜在的安全风险。这就是为什么如今很少使用 Telnet,而是使用一种称为 SSH 的非常安全的网络传输协议的主要原因。

  7. SSH 协议 : SSH( Secure Shell)是目前较可靠,专为远程登录会话和其他网络服务提供安全性的协议。利用 SSH 协议可以有效防止远程管理过程中的信息泄露问题。SSH 建立在可靠的传输协议 TCP 之上。

运行于 UDP 协议之上的协议

  1. HTTP 协议(HTTP/3.0 ): HTTP/3.0 弃用 TCP,改用基于 UDP 的 QUIC 协议 。
  2. DHCP 协议:动态主机配置协议,动态配置 IP 地址
  3. DNS:域名系统(DNS,Domain Name System)将人类可读的域名 (例如,www.baidu.com) 转换为机器可读的 IP 地址 (例如,220.181.38.148)。 我们可以将其理解为专为互联网设计的电话薄。实际上,DNS 同时支持 UDP 和 TCP 协议。

5. TCP三次握手四次挥手

建立连接——TCP三次握手

image-20250314095227023

建立一个 TCP 连接需要“三次握手”,缺一不可:

  • 一次握手:客户端发送带有 SYN(SEQ=x) 标志的数据包 -> 服务端,然后客户端进入 SYN_SEND 状态,等待服务端的确认;
  • 二次握手:服务端发送带有 SYN+ACK(SEQ=y,ACK=x+1) 标志的数据包 –> 客户端,然后服务端进入 SYN_RECV 状态;
  • 三次握手:客户端发送带有 ACK(ACK=y+1) 标志的数据包 –> 服务端,然后客户端和服务端都进入ESTABLISHED 状态,完成 TCP 三次握手。

当建立了 3 次握手之后,客户端和服务端就可以传输数据啦!

什么是半连接队列和全连接队列?

在 TCP 三次握手过程中,Linux 内核会维护两个队列来管理连接请求:

  1. 半连接队列(也称 SYN Queue):当服务端收到客户端的 SYN 请求时,此时双方还没有完全建立连接,它会把半连接状态的连接放在半连接队列。
  2. 全连接队列(也称 Accept Queue):当服务端收到客户端对 ACK 响应时,意味着三次握手成功完成,服务端会将该连接从半连接队列移动到全连接队列。如果未收到客户端的 ACK 响应,会进行重传,重传的等待时间通常是指数增长的。如果重传次数超过系统规定的最大重传次数,系统将从半连接队列中删除该连接信息。

这两个队列的存在是为了处理并发连接请求,确保服务端能够有效地管理新的连接请求。另外,新的连接请求被拒绝或忽略除了和每个队列的大小限制有关系之外,还和很多其他因素有关系,这里就不详细介绍了,整体逻辑比较复杂。

为什么要三次握手?

三次握手的目的是建立可靠的通信信道,说到通讯,简单来说就是数据的发送与接收,而三次握手最主要的目的就是双方确认自己与对方的发送与接收是正常的。

  1. 第一次握手:Client 什么都不能确认;Server 确认了对方发送正常,自己接收正常
  2. 第二次握手:Client 确认了:自己发送、接收正常,对方发送、接收正常;Server 确认了:对方发送正常,自己接收正常
  3. 第三次握手:Client 确认了:自己发送、接收正常,对方发送、接收正常;Server 确认了:自己发送、接收正常,对方发送、接收正常

三次握手就能确认双方收发功能都正常,缺一不可。

第 2 次握手传回了 ACK,为什么还要传回 SYN?

服务端传回发送端所发送的 ACK 是为了告诉客户端:“我接收到的信息确实就是你所发送的信号了”,这表明从客户端到服务端的通信是正常的。回传 SYN 则是为了建立并确认从服务端到客户端的通信。

SYN 同步序列编号(Synchronize Sequence Numbers) 是 TCP/IP 建立连接时使用的握手信号。在客户机和服务端之间建立正常的 TCP 网络连接时,客户机首先发出一个 SYN 消息,服务端使用 SYN-ACK 应答表示接收到了这个消息,最后客户机再以 ACK(Acknowledgement)消息响应。这样在客户机和服务端之间才能建立起可靠的 TCP 连接,数据才可以在客户机和服务端之间传递。

三次握手过程中可以携带数据吗?

在 TCP 三次握手过程中,第三次握手是可以携带数据的(客户端发送完 ACK 确认包之后就进入 ESTABLISHED 状态了),这一点在 RFC 793 文档中有提到。也就是说,一旦完成了前两次握手,TCP 协议允许数据在第三次握手时开始传输。

如果第三次握手的 ACK 确认包丢失,但是客户端已经开始发送携带数据的包,那么服务端在收到这个携带数据的包时,如果该包中包含了 ACK 标记,服务端会将其视为有效的第三次握手确认。这样,连接就被认为是建立的,服务端会处理该数据包,并继续正常的数据传输流程。

断开连接——TCP四次挥手

image-20250314101932268

断开一个 TCP 连接则需要“四次挥手”,缺一不可:

  1. 第一次挥手:客户端发送一个 FIN(SEQ=u) 标志的数据包->服务端,用来关闭客户端到服务端的数据传送。然后客户端进入 FIN-WAIT-1 状态。
  2. 第二次挥手:服务端收到这个 FIN(SEQ=u) 标志的数据包,它发送一个 ACK (ACK=u+1)标志的数据包->客户端 。然后服务端进入 CLOSE-WAIT 状态,客户端进入 FIN-WAIT-2 状态。
  3. 第三次挥手:服务端发送一个 FIN (SEQ=y)标志的数据包->客户端,请求关闭连接,然后服务端进入 LAST-ACK 状态。
  4. 第四次挥手:客户端发送 ACK (ACK=y+1)标志的数据包->服务端,然后客户端进入TIME-WAIT状态,服务端在收到 ACK (ACK=y+1)标志的数据包后进入 CLOSE 状态。此时如果客户端等待 2MSL 后依然没有收到回复,就证明服务端已正常关闭,随后客户端也可以关闭连接了。

只要四次挥手没有结束,客户端和服务端就可以继续传输数据!

为什么要四次挥手?

TCP 是全双工通信,可以双向传输数据。任何一方都可以在数据传送结束后发出连接释放的通知,待对方确认后进入半关闭状态。当另一方也没有数据再发送的时候,则发出连接释放通知,对方确认后就完全关闭了 TCP 连接。

举个例子:A 和 B 打电话,通话即将结束后。

  1. 第一次挥手:A 说“我没啥要说的了”
  2. 第二次挥手:B 回答“我知道了”,但是 B 可能还会有要说的话,A 不能要求 B 跟着自己的节奏结束通话
  3. 第三次挥手:于是 B 可能又巴拉巴拉说了一通,最后 B 说“我说完了”
  4. 第四次挥手:A 回答“知道了”,这样通话才算结束。
为什么不能把服务端发送的 ACK 和 FIN 合并起来,变成三次挥手?

因为服务端收到客户端断开连接的请求时,可能还有一些数据没有发完,这时先回复 ACK,表示接收到了断开连接的请求。等到数据发完之后再发 FIN,断开服务端到客户端的数据传送。

如果第二次挥手时服务端的 ACK 没有送达客户端,会怎样?

客户端没有收到 ACK 确认,会重新发送 FIN 请求。

为什么第四次挥手客户端需要等待 2*MSL(报文段最长寿命)时间后才进入 CLOSED 状态?

第四次挥手时,客户端发送给服务端的 ACK 有可能丢失,如果服务端因为某些原因而没有收到 ACK 的话,服务端就会重发 FIN,如果客户端在 2*MSL 的时间内收到了 FIN,就会重新发送 ACK 并再次等待 2MSL,防止 Server 没有收到 ACK 而不断重发 FIN。

MSL(Maximum Segment Lifetime) : 一个片段在网络中最大的存活时间,2MSL 就是一个发送和一个回复所需的最大时间。如果直到 2MSL,Client 都没有再次收到 FIN,那么 Client 推断 ACK 已经被成功接收,则结束 TCP 连接。

6. TCP如何保证可靠传输

  1. 基于数据块传输:应用数据被分割成 TCP 认为最适合发送的数据块,再传输给网络层,数据块被称为报文段或段。
  2. 对失序数据包重新排序以及去重:TCP 为了保证不发生丢包,就给每个包一个序列号,有了序列号能够将接收到的数据根据序列号排序,并且去掉重复序列号的数据就可以实现数据包去重。
  3. 校验和 : TCP 将保持它首部和数据的检验和。这是一个端到端的检验和,目的是检测数据在传输过程中的任何变化。如果收到段的检验和有差错,TCP 将丢弃这个报文段和不确认收到此报文段。
  4. 重传机制 : 在数据包丢失或延迟的情况下,重新发送数据包,直到收到对方的确认应答(ACK)。TCP 重传机制主要有:基于计时器的重传(也就是超时重传)、快速重传(基于接收端的反馈信息来引发重传)、SACK(在快速重传的基础上,返回最近收到的报文段的序列号范围,这样客户端就知道,哪些数据包已经到达服务器了)、D-SACK(重复 SACK,在 SACK 的基础上,额外携带信息,告知发送方有哪些数据包自己重复接收了)。关于重传机制的详细介绍,可以查看详解 TCP 超时与重传机制这篇文章。
  5. 流量控制 : TCP 连接的每一方都有固定大小的缓冲空间,TCP 的接收端只允许发送端发送接收端缓冲区能接纳的数据。当接收方来不及处理发送方的数据,能提示发送方降低发送的速率,防止包丢失。TCP 使用的流量控制协议是可变大小的滑动窗口协议(TCP 利用滑动窗口实现流量控制)。
  6. 拥塞控制 : 当网络拥塞时,减少数据的发送。TCP 在发送数据的时候,需要考虑两个因素:一是接收方的接收能力,二是网络的拥塞程度。接收方的接收能力由滑动窗口表示,表示接收方还有多少缓冲区可以用来接收数据。网络的拥塞程度由拥塞窗口表示,它是发送方根据网络状况自己维护的一个值,表示发送方认为可以在网络中传输的数据量。发送方发送数据的大小是滑动窗口和拥塞窗口的最小值,这样可以保证发送方既不会超过接收方的接收能力,也不会造成网络的过度拥塞。

七、IP

1. IP协议的作用是什么?

IP(Internet Protocol,网际协议) 是 TCP/IP 协议中最重要的协议之一,属于网络层的协议,主要作用是定义数据包的格式、对数据包进行路由和寻址,以便它们可以跨网络传播并到达正确的目的地。

目前 IP 协议主要分为两种,一种是过去的 IPv4,另一种是较新的 IPv6,目前这两种协议都在使用,但后者已经被提议来取代前者。

2. 什么是IP?IP如何寻址?

每个连入互联网的设备或域(如计算机、服务器、路由器等)都被分配一个 IP 地址(Internet Protocol address),作为唯一标识符。每个 IP 地址都是一个字符序列,如 192.168.1.1(IPv4)、2001:0db8:85a3:0000:0000:8a2e:0370:7334(IPv6) 。

当网络设备发送 IP 数据包时,数据包中包含了 源 IP 地址目的 IP 地址 。源 IP 地址用于标识数据包的发送方设备或域,而目的 IP 地址则用于标识数据包的接收方设备或域。这类似于一封邮件中同时包含了目的地地址和回邮地址。

网络设备根据目的 IP 地址来判断数据包的目的地,并将数据包转发到正确的目的地网络或子网络,从而实现了设备间的通信。

这种基于 IP 地址的寻址方式是互联网通信的基础,它允许数据包在不同的网络之间传递,从而实现了全球范围内的网络互联互通。IP 地址的唯一性和全局性保证了网络中的每个设备都可以通过其独特的 IP 地址进行标识和寻址。

3. 什么是IP地址过滤?

IP 地址过滤(IP Address Filtering) 简单来说就是限制或阻止特定 IP 地址或 IP 地址范围的访问。例如,你有一个图片服务突然被某一个 IP 地址攻击,那我们就可以禁止这个 IP 地址访问图片服务。

IP 地址过滤是一种简单的网络安全措施,实际应用中一般会结合其他网络安全措施,如认证、授权、加密等一起使用。单独使用 IP 地址过滤并不能完全保证网络的安全。

4. IPV4和IPV6的区别?

IPv4(Internet Protocol version 4) 是目前广泛使用的 IP 地址版本,其格式是四组由点分隔的数字,例如:123.89.46.72。IPv4 使用 32 位地址作为其 Internet 地址,这意味着共有约 42 亿( 2^32)个可用 IP 地址。

image-20250314104746153

IPv6 地址使用更复杂的格式,该格式使用由单或双冒号分隔的一组数字和字母,例如:2001:0db8:85a3:0000:0000:8a2e:0370:7334 。IPv6 使用 128 位互联网地址,这意味着越有 2^128(3 开头的 39 位数字,恐怖如斯) 个可用 IP 地址。

image-20250314104810975

除了更大的地址空间之外,IPv6 的优势还包括:

  • 无状态地址自动配置(Stateless Address Autoconfiguration,简称 SLAAC):主机可以直接通过根据接口标识和网络前缀生成全局唯一的 IPv6 地址,而无需依赖 DHCP(Dynamic Host Configuration Protocol)服务器,简化了网络配置和管理。
  • NAT(Network Address Translation,网络地址转换) 成为可选项:IPv6 地址资源充足,可以给全球每个设备一个独立的地址。
  • 对标头结构进行了改进:IPv6 标头结构相较于 IPv4 更加简化和高效,减少了处理开销,提高了网络性能。
  • 可选的扩展头:允许在 IPv6 标头中添加不同的扩展头(Extension Headers),用于实现不同类型的功能和选项。
  • ICMPv6(Internet Control Message Protocol for IPv6):IPv6 中的 ICMPv6 相较于 IPv4 中的 ICMP 有了一些改进,如邻居发现、路径 MTU 发现等功能的改进,从而提升了网络的可靠性和性能。

八、ARP